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Abstract

We have previously given well-set exterior diffenmtial  systems for Ricci-flat  4-geometries as

reductions-subbundles-of  the bundle of orthonormal  frames over 10 dimensional Euclidean (or

pseudo-Euclidean) space, lSO(lO).(l) We now understand how to prolong the systems set on

1S0(10) to systems on its tangent bundle TISO(10) and then to & tangent bundle. This in turn

makes possible the adjoining of additional invariant forms further restricting the solutions to those

having Killing vectors, i.e., isometnes.  We discuss the geometry of tangent bundles, and report

the results of Monte C&lo calculations of the Cartan integer characters of these prolonged exterior

diffenmtial systems, showing them to be well set for Cauchy-Kowaleski  integration, and in the

Ricci-flat  cases to be causally detem~ined  from initial data set on 3-spaces. Similar results are

reported for Ricci-flat  geometries with two isometrics.
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L The Structure of ‘I-G

When the intrinsic structure of a group manifold G is expressed by Cartan-Maurer equations
for its left (right)-invariant basis l-forms ‘rla (a = 1.. . .n, the dimension of ‘

. , -  ** .*

the identities

+‘+ ; C;L q!q’ ,. Q

me manlrola~ we nave

(1)

CL are the structure constants, satisfying Jacobi identities, so the 3-form exterior derivatives of

(1) are quickly shown to vanish, modulo  (l). The set (1) is ~losed.

To(1) may be added an additional set in n further basis 1-forms fia:

Closure is again immediate, modulo  (1) and (2), This introduction of additional bases has been

called co-adjoint  prolongation(2J as clearly it is related to the structure of the linear adjoint

representation of G. (1) and (2) together are the Cartan Maurer equations of a Lie group with 2n

invariant bases ma and qa. To identify this larger group geometrically we will consider the dual

basis of left (right) -invariant vector fields on G, say Va where Va J Tb =$. They satisfy

(2)

(3)

We use the concept of lifting in a geometric object bundle(z). Roughly, a geometric object is a

(multi-component) field-cross section of a bundle-that has also a well defined Lie derivative

(and so a covariance property under diffeomorphisms). (Tensor fields m jinea geometric

objects). This is equivalent to the statement that vector fielcls-diffeomorphisrn  generators—in the

base space of such a bundle can be ]iftecl, into vector fields that operate on the bundle manifold,

preserving their Lie product relations. Vector fields on a manifold M are also geometric object

fields, cross sections of the tangent bundle TM. This dual r61e yields NQ intrinsic lifts of them into
TM(3). ]n terms of a local  coordinate frame xi on M, introduce coordinates vi in the fibers of TM

a
such that at xi a tangent vector V = V’ — (

. .
is the point X1, v’ = Vi ) ir~ TM. The covariant  (or

ax’
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(a vector field throughout TM). The second lift is the so-called vertical lift

(4)

(5)

The complete lift expresses covariance: three diffeomorphism generators U, V, W in M that

satisfy [U, V] = W there, have lifts in TM that, from (4), satisfy

[’” Cvl=cw
From (4) and (5) we further calculate

[Cu ‘v]= ‘W=[vu Cvl
which shows the vertical lift operation also to be inrnnsic,  and finally

[Vu$vvl=oo
If M is a group manifold G, applying these two lifts to the basis vectors in (3)

[%, “u]= c.; ‘a

[’VA, ‘K] = C:h ‘vL

(6)

(7)

(8)

(9)

These are immediately seen to be Lie-algebraically-dual to the co-adjoint  prolongation of G, viz.

(1) and (2), so we have shown (1) and (2) to be the Cartan-Maurer structure equations of TG, The

direct lift (pull back) of the qa will still be denoted qa; the fia are dual to vertically lifted basis

vectors. ~a and fia thus are a canonical basis on TG. An n-dimensional cross section of TG is,

3

we repeat, a vector field on G.



II. G-prolongation

The same formal prolongation leading from (1) to (2) has been used by Gurses(4) to discuss

invariance of the spinor equations for Ricci-flat  4-geometries. Spinor, or d yadic, or tetrad

formalisms for the Einstein field equations can all be seen as the setting of exterior differential

systems on suitable flat frame bundles (which are in fact group manifolds), Educing  them to non-

flat bundles over 4-dimensional base manifolds(l). By considering variations of the spinor

equations Giirses essentially doubles the number of variables (although this is not clear when

variations of higher order forms are introduced without first expressing these forms in terms of

basis 1-forms). He interpreted this as leading to the invariance group of the field equations; our

discussion above rather agrees with later comment(s) that one thus finds general diffeomorphism

generators-arbitrary vector fields on any solution manifold. Nevertheless Gurses prolongation

technique on ~ifferential svstems on bundies is a significant generalization of co-adjoint

prolongation of group manifolds. We will denote it G-prolongation. Our detailed calculations of

specific exterior differential systems, some of which are reported below, all show G-prolongation

to be consistent and well set. We have realized that it allows us to formulate invariant differential

systems for Ricci-flat  space times luwin~ ~—Killing vectors–-situations which we have

not previously been able easily to discuss in terms of Cartanian  moving frame systems. Instead of

forcing auxiliary vectors into the Cartan  formalism, we now just double (and redouble) the basis

forms, and then specialize the solutions by adding extra forms to the G-prolonged exterior

differential systems.

111. Prolonged Systems with One Vector Fic]d

We have previously(@(l)  motivated and described the key diagnostic calculations for an

exterior differential system in n dimensions: the identification of its Cauchy characteristic vectors

and the calculation of its Cartan  characteristic integerss = ( so,s], s2. . . sg-l ). g is the “genus” of

the system, the dimension of its maximal, generic, integral manifolds (solutions of the equivalent

set of first order partial differential equations). These integral manifolds are fiber bundles, the

fibers being generated by the Cauchy  characteristics. The integers s arc calculated from the ranks of
g-l

a nested series of linear homogeneous equations. If ~si = n – g the system is well set, and
o

generic solutions are found by systematic Cauchy-Kowaleski  integrations from data set on a nested

sequence of submanifolds of dimension 1, 2, . . . . If si=O for i 2q, the essential C-K data are Sq-l

functions set on q- 1 -dimensional submanifolds;  when the solution is a bundle over a q-dimensional

base, we call the system causal(b).
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The calculation ofs is highly non-trivial, and in the mathematics literature results for exterior

systems generated by forms of degree >2 are hardly to be found. Many classic problems of

embedding of submanifolds  are discussed with Cartanian  methods by Jensen and Griffiths(7J,  but

when higher rank forms are adjoined, for example to restrict solutions to be Ricci-flat,  amdytical

calculation ofs becomes almost impossible. We have instead developed some symbolic

manipulation programs to handle large numbers of indexed basis forms, and a Monte Carlo

approach to sequentially calculate the ranks giving the integers in the sets. An example of this has

now been explicitly explained and the computer output displayed(8).  The results reported below

have all been calculated in this way.

We begin with the group G=ISO(10), the orthogonal frame bundle over 10 dimensional

Euclidean space. In terms of 55 canonical basis forms cop, Oh = – m;, p = 1...10 (the signs can

be adjusted afterwards for different signatures), satisfying the usual structure relations(l), the

exterior differential system for immersed 4-geon~eties  is the ideal generated by the invariant

forms(l)

&

(lo)

where i = 1.“4, A = 5-10. There are 21 Cauchy  characteristic vectors (clual  to O} and m;, which

do not occur in (10)); the Cartan  characteristic integers ares = (6, 6, 6,6,6, 0,.-”) and g = 25.
g-1
~si = 30 = 55-25 so (10) is a well-set Cauchy-Kowaleski set of first order p.d.e.’s  (when
o

expanded in any 55 dimensional set of coordinates on 1S0(1 O)). Solutions are 25 dimensional,

fibered  over a 4 manifold. The fibers are each O(4) @ O(6). A cross section is a realization of an

orthogonal frame field, plus 15 auxiliary gauge fields spanning O(6). The Riemann tensor is coded

in the curvature 2-forms ~]A A COk.

Now G-prolong both 1S0(10) and the generating set (10). We have an exterior system on

TISO(10), dim 110, generated by
/ \A

3
(!’tyh J’

5

(11)



Monte Carlo calculation “gives s = { 12, 12, 12, 12, 12, 0,”.), solutions are g = 50 dimensional, 42

dimensional fibers over 8 dimensional bases. Evidently, solutions are pairs: immersed 4-

geometries with tangent bundles over them.

If four 3-forms CO~ A CO~  A @k&ijkl, coding for the condition that the Ricci tensor induced on

the sub-manifold vanishes, are added to (10) the characters become(l) s = {6,6, 10, 8, 0,.-}, g =

25. It is noteworthy that now S4 = O: generic solutions arise from eight functions set on 3-spaces,

demonstrating the causal, dynamical property of the Einstein field equations. The G-prolonged

system on TISO( 10) has generators

Q
A

— / 4
LfJ

(12)

and we find by Monte Carlo calculation s = ( 12, 12,20, 16, 0,”-) g = 50. We interpret this again

as allowing an arbitrary vector field in any solution. We have calculated a number of other sets

with the same result, and as explained above believe this G-prolongation to be a neat technique

generalizing co-adjoint  prolongation of Lie groups.

The new application we have made, then, is to specitilize  to a Killing vector field, by further

adjoining to either (11) or (12) the generating fomls

0 3 )

which are closed rnodulo themselves and either (11) or ( 12) and which require the variations of the
-cow-we c il”ovt
-Afield ~d the curvatu~ 2-fom~s C&A O& to vanish. Note that the immersion is made

specific by further requiring preservation of the lines of curvature (that is, we also include the

variations hi in the ideal). For general 4-metrics using (1 1), we calculate s = {22, 18, 14, 10,6,

0,.- ). The most interesting result is for Ricci-flat  4-geometries having one Killing vecto~  the

combined ideal (12) plus (13) yields s = {22, 18, 18, 12, 0,-. ) g = 40. There are 36 Cauchy

characteristics, six corresponding to frame covariance (co; not present) and 30 gauge fields
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(co: and @ not present) , The invariant differential system for these space times is well set and

causal: the generic solution depends on 12 initial value functions&~a 3 space.

IV, Prolongation with Two Vector Fields

We have considered further prolongation to the second tangent bundle. This appears to be at

the practical limit of our present computational ability, but it makes possible an invariant two

Killing vector formulation that should make contact with many previously known results: soliton

hierarchies for the Ernst equation, for example.

The structure of TTG is interesting in itself@)(l@.Now  there are four lifts of vector fields

from G—we label them cc, CV, vc and vv in an obvious notation and find by iterating (9)

(14)

Dual forms satisfy a G-prolongation of (1) and (2):

TI’G is a nonlinear geometric object bundle with 3n-dimensional  fibers, and so has a Lie derivative

for fields that are cross sections(2J. Such fields+ross  sections of iterated tangent bundles—have

been called ~ by J. E. White. They are carefully discussed, and their (non-linear) Lie

derivatives derived, in his mathematical nlonograph(lo).  Points in the fibers of the second tangent

bundle of M are local  elements of 2-manifolds in M; as a cross section of ‘I’M is a (calibrated) n- 1

dimensional congruence of lines in n-space, so is a cross section of ‘ITM a realization of the base

equipped with an n-2 dimensional congruence of 2-manifolds. If such a construction were
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attempted with two copies of cross sections of TG—linear vector fields--– we would have to adjoin

further conditions for them to be 2-forming. As a cross section of 7TG, this closure is automatic,

Prolongation to formulate geometries having two 2-forming Killing vector fields then is

straightforward, However as the number of dimensions doubles again, we find our Monte Carlo

program unable to give a reliable set of characters for them= 4 case.* Fo$;mpler case of a 3

dimensional Riemannian  geometry immersed in 6 dimensional flat space, i = 1,2,3 and A = 4,5,

6, the dimension of 1S0(6) is 21 and the problem with two isometrics is set on its second tangent

bundle, TTISO(6),  dim 84. This we have analyzed successfully.

To be explicit, the complete exterior differential system we set cm THSO(6),  dim 84, is 30

1 -forms:

(/6)
w

and to this we can add three 2-forms for Ricci-flatness.  The results of the Monte Carlo

computations are that the systems are well set, and in the second case causal (2+1 gravity with

invariant lines of curvatures):

n = 84, s= {30, 21, 12, 3,0,.-) g= 18 general 3-geon~etries with 2 isometrics

n = 84, s = (30, 24, 12,0,.  ”.) g= 18 flat 3 geometries with 2 isometrics

Three dimensional cross sections of solutions are 3 connection form fields and 12 gauge fields

(
A  - A  -A OA

)
respectively dual to co!, ~B ,@B , 6.)B, @B .

* We suspecl the characters for general 4-spaces with 2 isometrics to bes = {54, 42,30, 18,6, 0,...), g = 70,66
dimensional fibers over 4 space, and thal with 4 additional 3-forms for Ricci-flatness  they become causal: s = (54,
42, 34, 20, O,...),
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